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Abstract. Understanding the activities taking place in a video is a chal-
lenging problem in Artificial Intelligence. Complex video sequences con-
tain many activities and involve a multitude of interacting objects. De-
termining which objects are relevant to a particular activity is the first
step in understanding the activity. Indeed many objects in the scene are
irrelevant to the main activity taking place. In this work, we consider
human-centric activities and look to identify which objects in the scene
are involved in the activity. We take an activity-agnostic approach and
rank every moving object in the scene with how likely it is to be involved
in the activity. We use a comprehensive spatio-temporal representation
that captures the joint movement between humans and each object. We
then use supervised machine learning techniques to recognize relevant
objects based on these features. Our approach is tested on the challeng-
ing Mind’s Eye dataset.

1 Introduction

Human activity recognition is motivated by the increasing needs of real-world
applications. Some of these applications involve recognizing the type of activity
or recognizing the object(s) which a person is interacting with. The behaviour
of involved objects can be defined as a certain spatial and temporal pattern
involving the interactions of a single or multiple actors.

A model can be learnt from a sequence of spatio-temporal features which
describes how a person is behaving or interacting with an object for different
activities. Accordingly one approach to recognizing activities involves acquiring
concepts of what objects mean to them based on the function they perform in
activities. In these methods, it is required to initially find the object(s) involved
in the activity then consider the spatial changes between objects to recognize
the activity. A pre-trained object detector can be used to detect the involved
objects [1]. However in many activity recognition tasks, the type of object does
not help in identifying the activity. For example, for action carry, it is not critical
to know that person is carrying a box or a ball.

Spatio-temporal reasoning aims to represent and reason about spatial aspects
of the world. It has been argued in AI that a person’s form of spatio-temporal
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reasoning is of a qualitative rather than a quantitative nature [2], and we aim to
emulate this in our work. Coarse and vague qualitative representations frequently
suffice for us to deal with the problems that we want to solve. For example, to
know that the meal is prepared in the kitchen rather than knowing the exact
coordinates for this activity.

Most qualitative approaches to spatial and temporal reasoning are based
on relations between objects, such as regions or time intervals. Learning activity
models can be formulated as the representation of time series data from tracking
objects in videos and then, mining these time series for patterns obeying certain
constraints. These patterns can be used for analysing videos, activity recognition,
anomaly detection and extracting some information about the objects of interest
in the video. Sridhar et al. [3, 4] proposed the qualitative spatial relations in a
graph to naturally represent interactions between objects participating in video
activities.

Yao et al. [5], developed a random field model that uses a structure learn-
ing method to learn the mutual context of objects and person body parts in
human-object interaction activities. Their model discovered the connectivity and
spatial relationships between the objects and body parts. Different to our work,
Kjellstrom et al. [6] assumed that objects and actions of interests are already
categorized. Then the relations are inferred from video data and represented as
pairs between action and object classes like “drink-cup”. The learned relations
can then be used for object and action recognition.

Clearly, recognising objects and identifying activities are related tasks, and
solving one informs the other. One motivation of our work is detecting activities
without recognising objects. Once the activity is detected, we could add object
recognition to identify the type of the involved object. The principal assumption
that we make in this work is that it is the collective behaviour and interaction of
objects rather than the individual behaviour that make an activity. This is the
main reason why we pay more attention in our work to analysing the interactions
of the objects using spatio-temporal primitives.

Detecting the relevant objects in human-object activities, regardless of the
type of object or the activity, is a very difficult problem in its own right which is
the main contribution we are making through this research. Initially, the inter-
acting objects, people and moving objects, are detected. The objects are tracked
and their behaviour in relation to each person is analysed. With the classifica-
tion method used in our work, we are able to differentiate between relevant and
irrelevant objects to the activities in each video.

The only input to our system is a video. After detecting the bounding boxes of
people and possible relevant objects in each video, we extract statistical informa-
tion from the computed spatio-temporal features. These features are calculated
for each person-object pair. For example, if there are two people and five pos-
sible relevant objects in a video, we consider all ten possible relations between
them. Then after classification, we calculate a ranked list of objects of interest.
We use human-centric videos, which involve at least one person performing an



Determining Interacting Objects 3

activity. In some of the videos like running, jumping and walking, there is no
object involved in the activity, i.e., all other objects in the scene are irrelevant.

2 Spatio-Temporal Features

Our motivation for applying qualitative spatio-temporal features for determin-
ing interacting objects in human-object activities is initially analysed before
detailing our method.

The changing spatial properties of objects in video and their changing rela-
tionships with other objects are often characteristic of particular activities. It is
then possible to express some rules in terms of these changes or to learn activities
based on similar change patterns [7, 3].

As mentioned before, qualitative features contain enough detailed informa-
tion to permit recognition and reduce the importance of noise existence in real-
world applications. There are many calculi defined in the field of Qualitative
Spatial Reasoning [8] with many applications in high level interpretation of video
data [4, 3, 9]. One of them is CORE-9, proposed by Cohn et al. [10].

CORE-9 is a uniform spatial representation of moving objects that integrates
the important aspects of space. This model relies purely on obtaining minimal
bounding rectangles of the objects in each video frame.

In CORE-9, the relevant objects and their minimum bounding rectangles are
detected and tracked in order to extract qualitative information from the video.
For every pair of objects per frame, nine cores are defined as shown in Fig. 1.
Then the status of each core is determined and their changes over frames are
analysed. All qualitative relations between the pair objects can be inferred using
these nine cores.

Topology, size, distance and direction are some of the most important spatial
properties of the objects that may change over time. In qualitative reasoning, the
relative change of these characteristics is taken into account. In human-object
activities, the relative size of interacting objects is important, regardless of their
absolute size. For example, when a person is dragging a box, the size of box or
person does not make any difference in the activity, since they can be close to
the camera and look bigger, or far from the camera and look smaller.

In this work, we use a rectangle representation for objects relevant to the
activities, since the applied detection algorithm gives us bounding rectangles for
the objects. Extracted features are based on changes of spatio-temporal relations
between human and object when the activity is occurring. Some of these features
have been chosen from CORE-9. Fig. 1 indicates two rectangles A and B and
illustrates how their projections define the nine cores in CORE-9. In our work,
these two rectangles represent the bounding rectangles around the person and
relevant object.

CORE-9 takes into account topology, direction, size, and distance between
objects as well as changes of those relations over time. A function called “change
function” is defined in [10] which is used for comparing changes in cores and
intervals. This function is defined for each variable ν as ch(ν) 7−→ {<,=, >}
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Fig. 1. Pair minimum bounding rectangles of A and B and their projections (left).
Defining nine cores and six intervals using the projections in CORE-9 (right).

Fig. 2. (Best viewed in colour) Changing of nine cores in CORE-9 when action
throw happens. (Nine cores of CORE-9, person and the relevant object bounding rect-
angles are shown by yellow, red and blue, respectively.)

where ch(ν) is ‘=’ if νt − νt−1 = 0, ch(ν) is ‘<’ if νt − νt−1 < 0 and ch(ν) is ‘>’
if νt− νt−1 > 0, in which t represents a time spot in a video. The variable ν can
be a core or an interval.

There are nine changes over time between sets of cores forming rectangles
and six for their intervals in CORE-9. These 15 features not only give some infor-
mation about the size changes for each object, but also provide some knowledge
about the direction and distance changes between the bounding rectangles of
two interacting objects. Fig. 2 shows how these CORE-9 features can describe
the changes when a person throws a bag.

We consider distance [11] separately even though it is partially embedded in
CORE-9 change features. The idea is that if a person wants to interact with an
object, at least in some frames of the video they should be very close to each
other and the distance between them shows this closeness.

Two other suitable features for our application are how much the location of
each interacting object is changing over time. As many irrelevant moving objects
like moving tree leaves, only move slightly around the same location throughout
the video. Hence, these features can prune out many irrelevant objects. To re-
move the effect of object size on these features, we normalized the features by
dividing by the object size in the image plane.

Fig. 3 shows how the change in distance and location is different for relevant
and irrelevant objects. These features are calculated for the same video as Fig. 2.
Regarding this figure, the distance between the person and the irrelevant object
which is a small part of the tree, is not changing considerably. Instead, the
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(b) Location changes

Fig. 3. (a) Changing distance between person and the object over frames, (b) Changing
the location of the object over frames. (relevant and irrelevant objects are shown by
blue and magenta respectively).

distance between the person and the bag is increasing between frames 42 and
56. There is a noteworthy difference between the location changes for relevant
and irrelevant object which is illustrated in Fig. 3(b).

The prominent point here is that for the purpose of this paper, we are not
interested in recognising what kind of activity is happening in the video. We
track behaviour of each moving object in the scene and then label it as relevant
or irrelevant. For this aim, we calculate some descriptive statistics to capture
important aspects of the distribution of frame-by-frame feature changes.

3 Detecting Human-Object Interactions

Interactions are often the main characteristic of an action. In this section, we
discuss the technical steps of our method to detect these interactions.

3.1 People Detection

Detection of people is of prime importance for most activity recognition ap-
plications as many interesting activities are done by humans. In order to find
the objects involved in the activities, we initially detect humans. The output of
most existing people detectors is a bounding rectangle around the person which
is suitable for our work.

For collecting the person detections, we use the publicly available implemen-
tation of the discriminatively trained deformable part models of Felzenszwalb et
al. [12]. This algorithm has been found to outperform many others in numer-
ous competitions. We did not have the ground truth for detections in Mind’s
Eye dataset, but visually the algorithm worked very well in this dataset and
significant number of people were accurately detected.
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(a) Optical flow (b) Detected blobs

Fig. 4. (Best viewed in colour) Detected moving blobs out of person bounding
rectangle.

(a) activity carry (b) activity carry (c) activity walk (d) activity jump

Fig. 5. (Best viewed in colour) Some examples of relevant and irrelevant objects.
(person: blue, relevant object: green, irrelevant object: red)

3.2 Detecting possible relevant objects

Detecting objects involved in human-object activities is a challenging problem
in computer vision. In many cases, the relevant object tends to be small or only
partially visible. The question here is how we can find the object of interest
in each activity. In many of these interactions, a person changes the interacted
object. This change can be in its shape like opening a box or in its location,
for example when a person throws an object. Such changes can be detected in
videos by investigating the motion of the relevant objects.

Optical flow [13] is used in this work to detect motion on all pixels of each
frame except within the boundary rectangle inferred from the person detector.
Fig. 4 illustrates the detected person and all possible relevant objects in a frame.
There are many challenges in using optical flow for detecting the relevant objects.
Tree branches moving with the wind, moving parts of human body out of its
bounding rectangle, and shadow are among these challenges (see Fig. 5).

We do not consider static objects, as we can not reliably detect them with
existing methods. Once static object detection works reliably, we can add these
objects to our analysis without having to change our method.

If we have multiple people in the scene, we can determine relevant objects
for each person separately, since our features are derived for each human-object
pair.
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3.3 Tracking and Data Association

After applying optical flow, there are many moving blobs in the video each of
which has the possibility of being either relevant or irrelevant to the activity.
The relational changes between each blob-person pair is different over time.
Therefore, by analysing the spatio-temporal relational changes between each
blob and person, we can differentiate between the relevant and irrelevant blobs.
For the temporal analysis, each relevant object candidate should be tracked over
the frames of the video.

Tracking-Learning-Detection (TLD) [14] is a real-time algorithm for tracking
unknown objects in videos. Given a bounding rectangle defining the object of
interest in a single frame, the algorithm automatically determines the object’s
bounding rectangle in other frames or indicates the invisibility of the object. TLD
simultaneously tracks the object, learns its appearance and detects it whenever it
appears in the video. TLD is capable of handling significant appearance changes
and short-term occlusions which is very useful for real world videos such as those
used in our experiments.

From the previous optical flow step, we have bounding rectangles for all
moving blobs. In this step we give these bounding rectangles to the tracker as
the targets to be tracked. In order to capture an object that only starts moving
after the first frame, we repeat these steps for all frames of video to calculate
tracks for all of possible object candidates.

In each frame we need to check if a moving blob is a new born target or an
existing target which is already being tracked. Hence, we need a method to find
the relationship between a detected moving blob in a frame and all detections
for the previous tracks in the current frame.

A simple approach is to associate the bounding rectangles in a frame to
existing targets that have the minimal Euclidean distance. In order to have
more robust object association, we have applied two metrics to greatly enhance
the results which are detailed as follows.

Assume Bm is a detected bounding rectangle for a moving blob in a frame.
This blob can be a new born object which has just started moving in the scene. It
can also represent an existing blob, if it is associated with at least one bounding
rectangle in an existing track. To be considered as an existing tracked blob, the
area of overlap, between Bm and the bounding rectangle of tracked object in
the same frame, Bt, must exceed 80%. Bounding rectangle overlap is defined as
the area of intersection divided by the area of union of the bounding rectangles.
This criterion is formulated as follows.

overlap(Bm, Bt) =
area(Bm ∩Bt)

area(Bm ∪Bt)
> 0.8 (1)

in which Bm∩Bt denotes the intersection of two bounding rectangles and Bm∪Bt

their union.

We also extract histogram of oriented gradients [15] as a feature descriptor for
both bounding rectangles, Bm and Bt. Then using a normalized square distance,
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frame # 5  # 60  # 90 # 115

frame # 55   # 80   # 105   # 130 

Fig. 6. Good and bad tracking results for two relevant objects in two different videos
of activity Carry, respectively.

we quantified the difference between two bounding rectangles as another criterion
with threshold of 0.05 as described in the following:

1

2
‖HOG(Bm)−HOG(Bt)‖22 < 0.05 (2)

Both thresholds of 0.8 and 0.05 were chosen arbitrarily but reasonable. So,
for each moving blob in a frame, we look for a bounding rectangle in one of
the existing tracks which satisfies the overlap and normalized square distance
measures. If there is no such Bt and no association found by the algorithm, the
detected blob will be considered as a new-born object in that frame and will be
tracked over the subsequent frames. Otherwise, if we find an association, we will
disregard the detected moving blob as already being tracked.

The TLD tracker can continue tracking, even when there is no detection by
the algorithm for a few frames, which might be due to the occlusion of the object
in the scene. In such cases, we generate some linearly interpolated rectangles to
represent the missed detections.

The output of this step is a track for each possible relevant object in the
video. Fig. 6 illustrates some good and bad tracking results for a relevant ob-
ject in two videos of activity carry. The second row of Fig. 6 shows how the
tracking algorithm fails in some cases despite the correct initialization of the
bounding box. However in the subsequent frames of this video, the object detec-
tion algorithm finds the box as a new born object again and continues tracking
it.

3.4 Extracting Spatio-temporal features

As explained earlier, after detecting all possible relevant objects, we track them.
We extract a feature vector of 18 different spatio-temporal features for each
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human-object pair per frame, and calculate seven statistical descriptors for each
spatio-temporal feature vector over frames. These descriptors are the maximum,
minimum, mean, median, mode, standard deviation and variance for each fea-
ture. As a result, each spatio-temporal feature matrix is converted to a vector of
7 × 18 = 126 feature values. The experimental results show that these features
can describe the data very well.

Our training data is highly imbalanced, as the class of relevant objects is
significantly under-represented compared to the class of irrelevant objects. To
overcome this problem, we over-sample positive data using Synthetic Minority
Over-sampling Technique (SMOTE) [16]. In this algorithm, the minority class
is over-sampled by taking each minority class sample and introducing synthetic
examples along the line segments joining all of the k minority class nearest
neighbours.

3.5 Evaluation Algorithm

Our evaluation metric is track-based in which the metrics are computed based
on each detected track and the ground truth track. We use two metrics, both on
simple threshold-based correspondence. For a video, assume Bij is the bounding
box in the ith frame from the jth track in that video. BGi is the bounding
box of ground truth track in the ith frame in the same video. We only consider
frames where both detected and ground truth objects appear. Both metrics are
computed for each frame i, between a detected object track, Bij , and ground
truth track, BGi. The first metric is the same overlap criteria used in data
association which can be formulated as:

overlap(Bij , BGi) =
area(Bij ∩BGi)

area(Bij ∪BGi)
> 0.5 (3)

In some videos, the relevant object bounding rectangle and the person bound-
ing rectangle in one frame have too much overlap. The only clue we use to detect
objects is motion in all parts of the frame except within the bounding box from
the person rectangle. Then if there is too much overlap between these two rect-
angles, i.e. the person and the object bounding rectangle, we can only detect
part of the object which is out of person bounding rectangle. In these situations,
we define a second metric for the evaluation. If at least 90% of object bounding
rectangle, Bij , is covered by the ground truth bounding rectangle, BGi, we con-
sider it as a good overlapping bounding rectangle. We formulate this metric as
follows:

area(Bij ∩BGi)

area(Bij)
> 0.9 (4)

Based on these metrics, a track is considered covered by a ground truth track
if both criteria, described above, are satisfied at least for 50% of frames in which
both detected and ground truth objects appear.
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4 Experimental Results and Evaluation

This section outlines the train and test dataset and the obtained results using the
metrics discussed in the previous section. Experiments were carried out using the
challenging Mind’s Eye dataset1. A total of 306 video sequences of 11 different
activities were evaluated. The actions are: carry, dig, fall, jump, kick, pickup,
putdown, run, throw, turn, walk. I these videos, different scenes and humans
performing the activities and different objects for the same activities are used.
We sampled every 5th frame in the videos and resized each frame from 720×1280
to 360×640. We also made a ground truth track corresponding to each of relevant
object for each video. The number of detected tracks in all videos was 15694
which were used for training and testing the method.

After detecting and tracking the bounding rectangles for the human and
all possible interacted objects per video, we extracted the qualitative spatio-
temporal features for each frame of object track and the person bounding rectan-
gle in the same frame. Next, we calculate statistical descriptors from the feature
matrix, as explained in the last section, which then used for training and testing
a classifier.

The key objective of this step is using a learning algorithm to build a predic-
tive model that accurately predicts the probability of being relevant or irrelevant
of previously unknown tracks. We use Support Vector Machine (SVM) in LIB-
SVM library [17] which is publicly available.

To our best knowledge, there is no other work on the same dataset that
addresses the problem of explicit detection of relevant objects. Therefore, we
defined our own baseline to compare results against. To develop a strong baseline,
we have separately trained the model with each of the 18 features explained
before, and distance gave the best results, 63.74% (see Table 1). This is consistent
with our intuition that interacting objects exhibit characteristic patterns in how
their relative distance changes over time. The next best feature was relative speed
with performance of 55.89%. Quantitative results are shown in Table 1. As the
training data is highly imbalanced, the number of false positives is much higher
than the number of true positives. It gives a very low precision. We also report
Macro Accuracy as the average of the true positive and true negative rates. Both
numbers and percentages are included in the table from which other statistics
can be derived.

To indicate the type of learning relevant objects in our work is generic and is
not based on some prior knowledge about the types of activities, we performed
a leave-one-activity-out cross validation experiment. We trained the classifier on
10 activities and evaluated on the 11th activity for each in turn. We measured
the performance of classification for each track using the evaluation procedure
detailed before. Quantitative results are presented as a confusion matrix in Ta-
ble 2. The results are quite reasonable and better than the baseline as the macro
accuracy shows almost 12% improvement and around 5% improvement in accu-
racy.

1 http://www.visint.org/
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Table 1. The confusion matrix for the baseline algorithm.
Confusion Matrix Precision Macro Acc

Predicted
irrelevant relevant

irrelevant 8394(55.33%) 6776(44.67%) 5.58% 63.74%
A
c
tu

a
l

relevant 146(27.86%) 378(72.14%)

Table 2. The confusion matrix for “Leave-one-activity-out”.
Confusion Matrix Precision Macro Acc

Predicted
irrelevant relevant

irrelevant 11414(75.24%) 3756(24.76%) 10.49% 75.22%

A
c
tu

a
l

relevant 130(24.81%) 394(75.19%)

Table 3. The confusion matrix for “10-fold cross validation”.
Confusion Matrix Precision Macro Acc

Predicted
irrelevant relevant

irrelevant 12293(81.03%) 2877(18.97%) 16.96% 87.08%

A
c
tu

a
l

relevant 36(6.87%) 488(93.13%)

Table 4. The confusion matrix for “adding activity feature”.
Confusion Matrix Precision Macro Acc

Predicted
irrelevant relevant

irrelevant 13159(86.74%) 2011(13.26%) 25.46% 92.23%

A
c
tu

a
l

relevant 12(2.29%) 512(97.71%)

The experimental results show that our model works quite well on unknown
activities. Next, we tested our model for the case which some instances of all
activities have been seen. We trained SVM with instances from all activity classes
to learn how the relevant and irrelevant objects are behaving in relation to the
person in each activity. We used a 10-fold cross validation on all tracks of all
activities. According to the results in Table 3, almost 81% of irrelevant objects
have been classified correctly as irrelevant. In this work we are interested in the
number of true positives, i.e. the number of relevant objects which are classified
correctly which in our results is more than 93%. As it is illustrated in the table,
the number of irrelevant object tracks is far larger than the number of relevant
objects. This imbalance in the data resulted in too many false positives, 2877,
which is considerably more than the number of true positives, 488, which affects
our algorithm’s precision. As expected, comparing Tables 2 and 3 shows that we
get more accuracy by training our model on instances from all activities.
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Finally, we evaluated our model in scenarios where the activity is known.
We presented a new binary indicator feature vector comprised of 11 features;
the number of activities. These features were then augmented with the previous
feature set. As illustrated in Table 4, using the type of activity improves the
accuracy of the system significantly. Only 2.29% of the relevant data has been
mistakenly classified as irrelevant and both precision and accuracy are much
higher as expected. This shows that knowing the activity type provides us with
more information on the relevancy of the object to the activity.

Fig. 7 shows two tracks which are correctly classified by our algorithm. The
first row shows a track of an irrelevant object, a fountain in this example, which
has been correctly classified. The second row also demonstrates four sequences
of true positive tracks which were correctly classified as relevant object track.

frame # 50  # 75   # 100  # 125  

frame # 5   # 25   # 35   # 50  

Carry

PutDown

Fig. 7. Some frames of videos which our model correctly classifies. (detected relevant
object is shown by red bounding rectangle). The rows are tracks of a true negative and
true positive examples in the test data.

Two examples of wrong classification are illustrated in Fig. 8. The first row
belongs to a false positive track. Based on the extracted spatio-temporal features
in this work, this object which is the person’s shadow, behaves like a relevant
object. For these cases, we can not strongly say if they are irrelevant to the
activity since they can be considered as a part of person. This problem can be
addressed by applying a semantic reasoning to these tracks to classify them into
the negative category.

The second row of Fig. 8 belongs to a false negative in which the algorithm
finds this object track as an irrelevant object, whilst the evaluation algorithm
finds it as a relevant object. After checking all false negatives, we found that
more than half of them had the same problem. The problem is that the tracking
algorithm failed for these objects. Consequently, after detecting the object, the
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algorithm considers it as a new born target and tracks it. The new track is then
classified as an irrelevant object which does not have any interaction with the
person. The figure shows that in frame 35, the bag is detected as a new born
target which is getting further from the person with no interaction with the
person.

frame # 50  # 75  # 100    # 125   

 # 75 

PutDown

Throw

frame # 35 #  40  # 60     # 70    

Fig. 8. Some frames of videos which our model wrongly classifies. Rows illustrates a
false positive and a false negative example of test tracks, respectively.

Currently our method is implemented in Matlab. There are a number of
processing steps in our pipeline. It takes 100 seconds to pre-process each frame
to detect the human and extract objects. It then takes less than 1ms per human-
object pair to extract the features and almost 3ms per track to be classified either
as relevant or irrelevant.

5 Conclusion and Future Work

One approach to identify relevant objects to a particular activity is through
qualitative spatio-temporal features. This is the main motivation of our work in
this paper. We presented a framework which, given a video involving a human-
centric activity, ranks every moving object with how likely it is to be involved in
that activity. The extracted features are mostly about how spatial properties of
objects are changing over time compared to the people. These changes mainly
have a meaningful manner for the relevant objects.

We demonstrated our approach on videos involving different human activi-
ties, differentiating relevant and irrelevant objects for unknown activities. Ex-
perimental results on the real world videos demonstrate that our method works
quite well without knowing the activity, but obviously can do better with the
activity.
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After discriminating relevant from irrelevant objects, by considering how the
spatio-temporal features change between people and the relevant objects, we
can recognize the activity. Therefore, one promising direction of future work is
to show how this method can improve activity recognition or object recognition.
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